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This paper presents a report on the application of self-Organised Maps developed by Teuvo Kohonen ([1] to
chemical spectra, With the application of SOM method, the composition of unlabeled spectra can be determined.
In this study, the data mining capabilities of SOM are examined using data from Auger Electron Spectroscopy
(AES), X-ray Photoelectric Spectroscopy (XPS) and X-ray Diffraction (XRD) for FeNi alloys. The results
obtained are compared to determine which data is more adaptive to the SOM.
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1. | Introduction

Self-Organising maps which was first developed
by Teuvo Kohonen [1] was first applied to
information processing. One characteristic of the
SOM is its ability to make multidimensional data
“visible on a 2 dimensional map.

SOM can be considered as a grid with predefined
but originally empty nodes. During learning, the
pattern of filling of the nodes is determined by the
degree of similarity between the data. Thus it is
possible to distinguish between similar and
dissimilar data on a 2 dimensional SOM. The
magnitude of the distance between the nodes is
shown by a grey level expression.

The spectral data as well as the alloy composition
from the AES, XPS and XRD data are considered
as multidimensional characteristics.

The objective of this experiment is to determine
the alloy composition from the spectral data and
to compare results obtained from the SOM for the
three types of data i.e. AES, XPS and XRD.

2. The SOM Algorithm

T. Kohonen [1] developed an equation, which
governs the information content of a unit in the

grid based on the information processing ability of
the brain.

m+D)=mO+e®x0-m@»1 D

Where m;(t) is the information processing ability
of the neuron cell (node) i at time t and x (t) is the
input signal. At time t, the cell learns this input
signal. During time (t+1), the information
processing ability of the cell becomes my(t+1) . If
X (t) is an n-dimensional input vector, then
x () =&, &, ..,&] and the n-dimensional
reference vector my(t) =[lL, Wiz, -.., Min]. € (t) is
the learning coefficient factor with values between
0 and 1. When an n-dimensional input vector is
introduced to the network, the reference vector in
the network (node) that is closest to the input
vector is defined as the best-matching node
“winner” and its information processing ability is
denoted by m(t). Prior to learning, a large
reference area surrounding the winner is selected
as a neighbourhood region. The reference unit
vectors in this neighbourhood region N(t) as well
as the winner m(t) learn the input vector x (t)
following eq.1. This forms a typical learning cycle.
The next cycle begins with the introduction of the
next input vector but with a reduced
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neighbourhood region. Learning continues until
only the winner is trained. Furthermore, « (t)
reduces to O as learning progresses. For the case
of this experiment, «(t) is a linear decreasing
function.

a(t)=o,(1-1/T), 2)

Where o, is the initial value, t is the present

learning cycle and T is the maximum number of
the learning cycles after which learning is
terminated. Other types of decay functions for
o can be considered.

3. Chemical Data Mining Analysis

Binding energies of AES data from 498eV to
1000eV in increments of 1eV are considered as
dimensional units. Each spectrum is a 503
dimensional input vector. The signal value of
the spectrum are then normalised to values

between 0 and 1 and used as input vector for the

SOM [2]. 5 samples of FeNi alloys (FelO0NiO,
Fe80Ni20, Fe50Ni50, Fe30Ni70 and FeONi100)
spectra shown in Fig. 1 are used as input data.
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Fig. 1 Normalised AES data of 5 FeNi Alloys from 500
to 1000eV.

For the purposes of data mining, the
dimensional values of FeSONiS0 are excluded
from the input data. The compositions of the
alloys are also considered as new dimensional
units and are also expressed within the values of

Chemical Analysis of AES, XPS and XRD data using ........

0 and 1. For instance Fe80Ni20 alloy has 20%
Nickel and is therefore denoted by 0.2.

" SOM is constructed from the multidimensional

data of Fig. 1 into a 2 dimensional 20X30-neuron
unit using grey level expression in Fig. 2

Foll 130 808 1000, cod = Din: %8, Size: 30620 units, bile naighernoed
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Fig. 2 SOM of AES on 20X30 (600) unit grid. 4 kinds of
FeNi alloys (Ni 0, 20, 70, 100%)

After SOM learning, all the 600 units or nodes
on the grid are compared by the Error function
Err: '

Err =2(xl.—m,.].)2, 3)
j=1

Where x;and m; are the j-th component of the n-

th dimensional input data and the i-th unit (node)
respectively. The labelled positions of the
20X30-unit grey scale map are determined by the
minimum value of the Error function.

FeSONiSO alloy was excluded in the input data
and is now used as test data to test the
generalising ability of the network. By use of
eq. 3, all the 600 nodes or units of Fig. 2 are
compared with the test data of FeSONiSO alloy.
The unit with minimum value of the Error
function is identified as the best match unit. For
this experiment, the closest unit was identified as
Fe50.2Ni49.8 as shown in Fig. 3 with a
composition error of 0.2%. Fig.4 illustrates the
frequency distribution of the composition of all
the 600 units of the SOM of Fig.2.
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Fig. 3. AES spectra of the original Fe50Ni50 input data
and the learned best match spectra.
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Fig. 4 Frequency distribution of the compositions of all
the 600 units in Fig. 2

The distributions were found to be around 10 in

the regions around O and 100% and slightly

higher around 20 and 70% because they
constitute the input data, which was learned
during SOM. Spectral data for Fe80Ni20 and

Fe30Ni70 were also used as test data for the

data mining exercise and the best match spectra

identified. The above experiment was repeated
for the following:

(a). XPS data for Fe2p FeNi alloys with
binding energies from 700eV to 735¢V
in increments of 0.05eV.

(b) XPS data for Ni2p FeNi alloys with
binding energies from 840eV to 890eV
in increments of 0.05eV.

(c) XRD data for FeNi alloys with diffraction
angles from 50 to 116 degrees in
increments of 0.02 degrees.

Using the same approach as discussed above.

The data that best matched the Ni50% alloy for

AES was identified to be Ni49.8% with an error

of 0.2%. The same approach was repeated for

XPS (Fe2p) and (Ni2p) data. Here, the best

match spectrum was 41.4% with an error of 8.6%

and 58.3% with an error of 8.3% respectively.

Similarly the best match spectra for XRD Ni50%

was Ni25.7% with an error of 24.3%.

- 4. Simulation Results

From the results obtained in the experiment, it is
obvious that the SOM is a good tool for data
mining. The composition of unlabeled spectra
can be determined using SOM. The composition
error and mean squared error of the various data
used are shown in Figs. 5 and 6.
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Fig. 5a Mean squared error and composition error of the
best match spectra for Ni20, Ni50 and Ni70 after learning
for AES Spectra.

Of the 4 different types of data used (AES, XPS
{Fe2p}, XPS {Ni2p}, XRD), AES data had the
lowest composition error and mean squared error
followed by XPS {Fe2p}, XPS {Ni2p} and XRD
data respectively.  During the process of
learning, the similarity between the various input
vectors is measured using the Euclidean distance
method. This is to determine which cluster or
pattern class each vector should be associated
with. The input data though independent must
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be somewhat related. For spectral data, the
relationship is found in the spectral shapes.
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Fig. 5b Mean squared error and composition error of the
best match spectra for Ni20, Ni50 and Ni70 after SOM
for XRD Spectra.
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Fig. 6a Mean squared error and composition error of the
best match spectra for Ni20, Ni50 and Ni70 after SOM
for XPS (Fe2p) Spectra.
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Fig. 6b Mean squared error and composition error of the
best match spectra for Ni20, Ni50 and Ni70 after SOM
for XPS (Ni2p) Spectra.
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XRD data was found to have very different
spectral shapes thereby resulting in high

~ Euclidean distances and high errors in the pattern

classification.
5. Conclusion .

The main advantage of SOM is that
multidimensional input data can be sorted and
made visible on a 2 dimensional SOM. In total,
4 different types of data were used in this
experiment to examine the data mining

~capabilities of SOM. Results obtained indicate

that the composition of unlabeled spectra can be
determined from the spectral data learned by the
SOM.

Furthermore, if a labelled spectrum with in-
complete characteristics or dimensions is placed
on the grid, the missing characteristics or
dimensions can be derived from the data that has
already been assigned to the empty grid through
the learning process. Thus it can be concluded
that SOM is very effective for chemical data
mining . :

As a first step, it is necessary to normalise the
input data. For this experiment, normalisation
refers to re-scaling by the minimum and the
range of the input spectrum.
({Input-Min.Input}/{Max. Input — Min. input}).
This may have caused the higher composition
error and mean squared error that were obtained
for the case of XPS signals. The next step of the
experiment will be to normalise the XPS data by
the minimum and the maximum in the data range
of the spectrum.
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